How do you find the vertex and the intercepts for y = x^2-5?

1 Answer
Jun 5, 2018

vertex =(0, -5)

"y-int" = 0

"x-int"=+-sqrt5

Explanation:

Find the y-intercept set x=0:

y = x^2-5=0^2-5=-5

Find the x-intercept(s) if they exist set y=0:

y = x^2-5

0 = x^2-5

5 = x^2

x=+-sqrt5

axis of symmetry:

ax^2+bx+c

y = x^2+0x-5

aos=-b/(2a) = -0/(2*1) = 0

vertex #=(aos, f(aos))= (0, f(0))

f(x) = x^2-5

f(0) = 0^2-5 = -5

vertex =(0, -5)

graph{x^2 -5 [-10, 10, -5, 5]}