How do you find the vertex and the intercepts for y=-x^2+x+12?

1 Answer
Sep 22, 2016

Vertex: (1/2,49/4)
y-intercept: 12
x-intercepts: 4 and (-3)

Explanation:

The vertex form of a parabola is
color(white)("XXX")y=color(m)(x-color(blue)(a))+color(red)(b)
with vertex at (color(blue)(a),color(red)(b))

Converting the given y=-x^2+x+12 into vertex form:

color(white)("XXX")y=color(green)((-1))(x^2-x+(1/2)^2)+12 + (1/2)^2

color(white)("XXX")y=color(green)((-1))(x-color(blue)(1/2))^2+color(red)(49/4)

giving us the vertex at (color(blue)(1/2,)color(red)(49/4))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The y-intercept is the value of y when color(magenta)(x=0)

y=-x^2+x+12 when color(magenta)(x=0)
rarr y=-color(magenta)(0)^2+color(magenta)(0)+12=12

So the y-intercept is 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The x-intercepts are the values of x when color(brown)(y=0)

y=-x^2+x+12 when color(brown)(y=0)
rarr -x^2+x+12=color(brown)(0) color(white)("XX")orcolor(white)("XX")x^2-x-12=0

This can be factored as
color(white)("XXX")(x-4)(x+3)=0
rarr x=4color(white)("XX")orcolor(white)("XX")x=-3

So the x-intercepts are {4,-3}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is the graph of this relation for verification purposes:
graph{-x^2+x+12 [-10.29, 18.19, -1.36, 12.9]}