How do you find the vertex for #y=2x^2 +11x-6#?

2 Answers
Jun 9, 2018

#y=2(x +11/4)^2-65/2#

Explanation:

Vertex form:

#y=a(x+h)^2+k#

Vertex #=(-h,k)

To put this in vertex form you must complete the square on the x terms which is a pain because 11 is not divisible by 2:

first isolate the terms with x:

#y=2x^2 +11x-6#

#y+6=2x^2 +11x#

in the form #ax^2+bx+c# to complete the square a must be 1 and:

#c=(b/2)^2#

#a=2# so we have to factor it out:

#y+6=2x^2 +11x#

#y+6=2(x^2 +11/2x)#

now add #c# to both sides of the equation, we have to add #2c# to the left side to account for the 2 we factored out:

#y+6 +2c=2(x^2 +11/2x+c)#

now solve fo c:

#c=(b/2)^2=((11/2)/2)^2=121/16#

see what I mean about it being a pain, insert solution in function:

#y+6 +2(121/16)=2(x^2 +11/2x+121/16)#

now complete the square:

#y+6 +53/2=2(x +(11/2)/2)^2#

#y+12/2 +53/2=2(x +11/4)^2#

#y+65/2=2(x +11/4)^2#

#y=2(x +11/4)^2-65/2#

vertex #=(-11/4,-65/2)#

graph{2x^2 +11x-6 [-20.33, 25.28, -25.08, -2.28]}

Jun 9, 2018

vertex #(-11/4, - 169/8)#

Explanation:

#y(x) = 2x^2 + 11x - 6#
The x-coordinate of the vertex is given by the formula
#x = - b/(2a) = - 11/4#
The y-coordinate of vertex is the value of #y(-11/4)# -->
#y(-11/4) = 121/8 - 121/4 - 6 = - 169/8#
Vertex #(-11/4, -169/8)#