How do you find the VERTEX of a parabola y=x^2-3x-10?
1 Answer
May 14, 2018
Explanation:
"given a parabola in "color(blue)"standard form "color(white)(x)ax^2+bx+c
"then the x-coordinate of the vertex is"
•color(white)(x)x_(color(red)"vertex")=-b/(2a)
y=x^2-3x-10" is in standard form"
"with "a=1,b=-3" and "c=-10
rArrx_("vertex")=-(-3)/2=3/2
"substitute this value into the equation for y"
y_("vertex")=(3/2)^2-3(3/2)-10=-49/4
rArrcolor(magenta)"vertex "=(3/2,-49/4)