How do you find the vertex of the parabola #y=-2x^2 + 12x - 13#?
2 Answers
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a "#
#"is a multiplier"#
#"to obtain this form use the method of "color(blue)"completing the square"#
#• " the coefficient of the "x^2" term must be 1"#
#rArry=-2(x^2-6x+13/2)#
#• " add/subtract "(1/2"coefficient of the x-term")^2" to"#
#x^2-6x#
#y=-2(x^2+2(-3)xcolor(red)(+9)color(red)(-9)+13/2)#
#color(white)(y)=-2(x-3)^2-2(-9+13/2)#
#color(white)(y)=-2(x-3)^2+5larrcolor(red)"in vertex form"#
#rArrcolor(magenta)"vertex "=(3,5)#
graph{(y+2x^2-12x+13)((x-3)^2+(y-5)^2-0.04)=0 [-10, 10, -5, 5]}
Vertex is at
Explanation:
equation
here
graph{-2x^2+12x-13 [-17.78, 17.78, -8.89, 8.89]} [Ans]