How do you find the vertex of the parabola y=2x^2-8x+7?

2 Answers
Feb 9, 2015

You can find the coordinates of your vertex either using a mnemonic or the derivative:

1) Mnemonic: the coordinates of the vertex of a parabola in the form:
y=ax^2+bx+c are:
x_v=-b/(2a)
y_v=-Delta/(4a) where Delta=b^2-4ac
in your case:
x_v=2
y_v=-1

2) Derivative: determine the derivative of your function and set it equal to zero:
y'=4x-8
4x-8=0 gived x=x_v=2
substituting back in your function:
y=y_v=2*4-8*2+7=-1

Graphically:
graph{2x^2-8x+7 [-4.385, 4.386, -2.19, 2.193]}

Mar 5, 2016

A slight variant on method

color(blue)("Vertex" ->(x,y)->(2,-1)

Explanation:

Given:" "2x^2-8x+7

Write as:" " 2(x^2-color(red)(8/2)x)+7

Consider the color(red)(-8/2)" from "-8/2x

color(blue)(x_("vertex")=(-1/2)xx(color(red)(-8/2)) = +8/4 = 2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substitute x=color(magenta)(2) in the original equation to find y_("vertex")

y=2x^2-8x+7" "->" "y_("vertex")=2(color(magenta)(2))^2-8(color(magenta)(2))+7

color(blue)(y_("vertex")= 8-16+7=-1)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Vertex" ->(x,y)->(2,-1)

Tony B