How do you find the vertex of the parabola #y=3x^2+5x+8#?

2 Answers

#(-5/6, 71/12)#

Explanation:

Given parabola:

#y=3x^2+5x+8#

#y=3(x^2+5/3 x)+8#

#y=3(x^2+2(5/6) x+(5/6)^2)-3(5/6)^2+8#

#y=3(x+5/6)^2-\frac{25}{12}+8#

#y=3(x+5/6)^2+\frac{71}{12}#

#3(x+5/6)^2=y-71/12#

#(x+5/6)^2=1/3(y-71/12)#

The above equation is in standard formula of upward parabola: #(x-x_1)^2=4a(y-y_1)\ \forall \ \ a>0# which has

Vertex: #(x-x_1=0, y-y_1=0)#

#(x+5/6=0, y-71/12=0)#

#\equiv(-5/6, 71/12)#

Jul 21, 2018

#"vertex "=(-5/6,71/12)#

Explanation:

#"given a parabola in "color(blue)"standard form"#

#•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0#

#"then the x-coordinate of the vertex is"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#y=3x^2+5x+8" is in standard form"#

#"with "a=3,b=5" and "c=8#

#x_("vertex")=-5/6#

#"substitute this value into the equation for y-coordinate"#

#y_("vertex")=3(-5/6)^2+5(-5/6)+8#

#color(white)(xxxx)=25/12-50/12+96/12=71/12#

#color(magenta)"vertex "=(-5/6,71/12)#