How do you find the vertex of the parabola y=3x^2+5x+8y=3x2+5x+8?

2 Answers

(-5/6, 71/12)(56,7112)

Explanation:

Given parabola:

y=3x^2+5x+8y=3x2+5x+8

y=3(x^2+5/3 x)+8y=3(x2+53x)+8

y=3(x^2+2(5/6) x+(5/6)^2)-3(5/6)^2+8y=3(x2+2(56)x+(56)2)3(56)2+8

y=3(x+5/6)^2-\frac{25}{12}+8y=3(x+56)22512+8

y=3(x+5/6)^2+\frac{71}{12}y=3(x+56)2+7112

3(x+5/6)^2=y-71/123(x+56)2=y7112

(x+5/6)^2=1/3(y-71/12)(x+56)2=13(y7112)

The above equation is in standard formula of upward parabola: (x-x_1)^2=4a(y-y_1)\ \forall \ \ a>0 which has

Vertex: (x-x_1=0, y-y_1=0)

(x+5/6=0, y-71/12=0)

\equiv(-5/6, 71/12)

Jul 21, 2018

"vertex "=(-5/6,71/12)

Explanation:

"given a parabola in "color(blue)"standard form"

•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0

"then the x-coordinate of the vertex is"

•color(white)(x)x_(color(red)"vertex")=-b/(2a)

y=3x^2+5x+8" is in standard form"

"with "a=3,b=5" and "c=8

x_("vertex")=-5/6

"substitute this value into the equation for y-coordinate"

y_("vertex")=3(-5/6)^2+5(-5/6)+8

color(white)(xxxx)=25/12-50/12+96/12=71/12

color(magenta)"vertex "=(-5/6,71/12)