How do you find the vertex of #y=2(x+4)^2-7#?
2 Answers
May 4, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where " (h,k)" are the coordinates of the vertex "#
#"and a is a constant"#
#y=2(x+4)^2-7" is in this form"#
#"with " h=-4" and " k=-7#
#rArrcolor(magenta)"vertex " =(-4,-7)#
May 4, 2017
The standard vertex form form is:
where
Explanation:
Change the given equation,
into the form of equation [1] by changing the plus sign into two minus signs:
Matching equation [2] with equation [1], we can see that the vertex is,