How do you find the vertex of y= -x^2+4x-3?
1 Answer
Apr 9, 2016
(2 , 1)
Explanation:
The standard form of a quadratic function is :
color(red)(|bar(ul(color(white)(a/a)color(black)(y=ax^2 + bx + c)color(white)(a/a)|))) The function here : y
= - x^2 + 4x - 3 " is in this form " with a = -1 , b = 4 and c = -3
x-coord of vertex =
color(blue)(|bar(ul(color(white)(a/a)color(black)((-b)/(2a)color(white)(a/a)|)))
rArr x_(vertex) = (-4)/(-2) = 2 To find corresponding value of y-coord of vertex , substitute
x = 2 into the function.x = 2 : y
= -(2)^2 + 4(2) - 3 = -4+ 8 -3 = 1
rArr vertex = color(orange)(|bar(ul(color(white)(a/a)color(black)( 2 , 1 )color(white)(a/a)|))) Here is the graph of y#= -x^2+4x-3
graph{-x^2+4x-3 [-10, 10, -5, 5]}