Given: a parabola equation
If the parabola equation is in the form: f(x) = Ax^2 + Bx + C = 0f(x)=Ax2+Bx+C=0
The vertex is (-B/(2A), f(-B/(2A)))(−B2A,f(−B2A))
Once you have the xx value of the vertex, just evaluate the function with that xx-value.
Example: f(x) = 3x^2 -2x - 9f(x)=3x2−2x−9
x = -(-2)/(2*3) = 2/6 = 1/3x=−−22⋅3=26=13
f(1/3) = 3 (1/3)^2 - 2/1 * 1/3 - 9f(13)=3(13)2−21⋅13−9
f(1/3) = 3/1 * 1/9 - 2/3 - 9f(13)=31⋅19−23−9
f(1/3) = 3/9 - 2/3 - 9f(13)=39−23−9
f(1/3) = 1/3 - 2/3 - 9/1 * 3/3f(13)=13−23−91⋅33
f(1/3) = -1/3 - 27/3 = -28/3 = -9 1/3f(13)=−13−273=−283=−913
vertex: (1/3, -28/3)(13,−283)