How do you find the zeros of f(x) = 7x^3 + 4x^2 - 3x + 3?

1 Answer
Feb 19, 2016

Use a substitution to get into the form t^3+pt+q = 0 then Cardano's method...

Explanation:

When a cubic has one irrational Real zero and two non-Real Complex zeros, I like to solve using Cardano's method.

First, I would like to have a cubic with integer coefficients and no square term. To get there from our f(x), multiply by 3^3*7^2 = 1323 and substitute t = 21x+4 as follows:

1323(7x^3+4x^2-3x+3)

=9261x^3+5292x^2-3969x+3969

=(9261x^3+5292x^2+1008x+64)-(4977x+948)+4853

=(21^3x^3+(3*21^2*4)x^2+(3*21*4^2)x+4^3)-((237*21)x+(237*4))+4853

=(21x+4)^3-237(21x+4)+4853

=t^3-237t+4853

So we want to solve t^3-237t+4853 = 0

Next substitute t = u + v to get:

0 = (u+v)^3-237(u+v)+4853

=u^3+v^3+(3uv-237)(u+v)+4853

=u^3+v^3+3(uv-79)(u+v)+4853

Add the constraint v = 79/u and multiply through by u^3 to get:

(u^3)^2+4853(u^3)+493039 = 0

Use the quadratic formula to find:

u^3 = (-4853+-sqrt(4853^2-4*1*493039))/2

=(-4853+-sqrt(21579453))/2

=(-4853+-63 sqrt(5437))/2

Since the derivation was symmetric in u and v, one of these roots can be taken as u^3 and the other v^3 to give us the Real root:

t_1 = root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2)

and the Complex roots:

t_2 = omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2)

t_3 = omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2)

where omega = -1/2+sqrt(3)/2i is the primitive Complex cube root of 1

Then x = (t-4)/21, so the zeros of f(x) are:

x_1 = 1/21(-4+ root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2))

x_2 = 1/21(-4+ omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2))

x_3 = 1/21(-4+ omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2))