How do you find the zeros of f(x) = 7x^3 + 4x^2 - 3x + 3?
1 Answer
Use a substitution to get into the form
Explanation:
When a cubic has one irrational Real zero and two non-Real Complex zeros, I like to solve using Cardano's method.
First, I would like to have a cubic with integer coefficients and no square term. To get there from our
1323(7x^3+4x^2-3x+3)
=9261x^3+5292x^2-3969x+3969
=(9261x^3+5292x^2+1008x+64)-(4977x+948)+4853
=(21^3x^3+(3*21^2*4)x^2+(3*21*4^2)x+4^3)-((237*21)x+(237*4))+4853
=(21x+4)^3-237(21x+4)+4853
=t^3-237t+4853
So we want to solve
Next substitute
0 = (u+v)^3-237(u+v)+4853
=u^3+v^3+(3uv-237)(u+v)+4853
=u^3+v^3+3(uv-79)(u+v)+4853
Add the constraint
(u^3)^2+4853(u^3)+493039 = 0
Use the quadratic formula to find:
u^3 = (-4853+-sqrt(4853^2-4*1*493039))/2
=(-4853+-sqrt(21579453))/2
=(-4853+-63 sqrt(5437))/2
Since the derivation was symmetric in
t_1 = root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2)
and the Complex roots:
t_2 = omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2)
t_3 = omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2)
where
Then
x_1 = 1/21(-4+ root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2))
x_2 = 1/21(-4+ omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2))
x_3 = 1/21(-4+ omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2))