How do you find the zeros of x^5 - 5x^4 - x^3 + x^2 + 4 = 0?
1 Answer
Zeros:
x_1 = 1
x_2 = -1
x_3 = 1/3(5+root(3)(179+12sqrt(114))+root(3)(179-12sqrt(114)))
and two related Complex zeros.
Explanation:
x^5-5x^4-x^3+x^2+4 = 0
First note that the sum of the coefficients is zero.
That is:
1-5-1+1+4 = 0
So
x^5-5x^4-x^3+x^2+4 = (x-1)(x^4-4x^3-5x^2-4x-4)
The sum of the coefficients of the remaining quartic with signs reversed on terms of odd degree is zero.
That is:
1+4-5+4-4 = 0
So
x^4-4x^3-5x^2-4x-4=(x+1)(x^3-5x^2-4)
By the rational root theorem, any rational zeros of the remaining cubic are expressible in the form
So the only possible rational zeros are:
+-1, +-2, +-4
None of these work, so the cubic only has irrational zeros.
Let:
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 0+0-2000-432+0 = -2432
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=27f(x)=27x^3-135x^2-108
=(3x-5)^3-75(3x-5)-358
=t^3-75t-358
where
Cardano's method
We want to solve:
t^3-75t-358=0
Let
Then:
u^3+v^3+3(uv-25)(u+v)-358=0
Add the constraint
u^3+15625/u^3-358=0
Multiply through by
(u^3)^2-358(u^3)+15625=0
Use the quadratic formula to find:
u^3=(358+-sqrt((-358)^2-4(1)(15625)))/(2*1)
=(-358+-sqrt(128164-62500))/2
=(-358+-sqrt(65664))/2
=(-358+-24sqrt(114))/2
=-119+-12sqrt(114)
Since this is Real and the derivation is symmetric in
t_3=root(3)(-119+12sqrt(114))+root(3)(-119-12sqrt(114))
and related Complex roots:
t_4=omega root(3)(-119+12sqrt(114))+omega^2 root(3)(-119-12sqrt(114))
t_5=omega^2 root(3)(-119+12sqrt(114))+omega root(3)(-119-12sqrt(114))
where
Now
x_3 = 1/3(5+root(3)(-119+12sqrt(114))+root(3)(-119-12sqrt(114)))
x_4 = 1/3(5+omega root(3)(-119+12sqrt(114))+omega^2 root(3)(-119-12sqrt(114)))
x_5 = 1/3(5+omega^2 root(3)(-119+12sqrt(114))+omega root(3)(-119-12sqrt(114)))