How do you go about this question? inte^(x+e^(x))dx

inte^(x+e^(x))dx

1 Answer
Mar 29, 2018

inte^(x+e^x)"d"x=e^(e^x)+"c"

Explanation:

inte^(x+e^x)dx=inte^xe^(e^x)dx

Let u=e^(e^x). By the chain rule,

(du)/dx=d/dxe^(e^x)=d/(de^x)e^(e^x)d/dxe^x=e^xe^(e^x)

Substituting this into the integral gives

inte^xe^(e^x)dx=intdu=u+"c"=e^(e^x)+"c"