How do you graph f(x)=(1/3)^(x+1)+2f(x)=(13)x+1+2 and state the domain and range?

1 Answer
Oct 8, 2017

See below.

Explanation:

f(x)=(1/3)^(x+1)+2f(x)=(13)x+1+2 is continuous, so there are no restrictions on xx

So domain is: color(blue)({x in RR })

y axis intercept where x= 0

y=(1/3)^(0+1)+2 = color(red)(7/3)
As:

lim_(x->+oo)(1/3)^(x+1)=0

So:

lim_(x->+oo)(1/3)^(x+1)+2=2

color(red)(y=2) is a horizontal asymptote.

For x<-1

(1/3)^(x+1)=> 1/((1/3)^(x+1)

lim_(x->-oo)((1/3)^(x+1)+2=oo

So range is:

color(blue)({y in RR : 2< y < oo})

Graph of f(x)=(1/3)^(x+1)=2:

graph{y= (1/3)^(x+1)+2 [-118.3, 118.8, -59.2, 59.4]}