How do you graph r=6-5costhetar=65cosθ?

1 Answer
Jul 4, 2018

See graph and explanation.

Explanation:

Use ( x, y ) = r ( cos theta, sin theta)(x,y)=r(cosθ,sinθ), to get the Cartesian form

( x^2 + y^2) = 6 sqrt( x^2 + y^2 ) - 5 x (x2+y2)=6x2+y25x

Graph:
graph{x^2+y^2 -6(x^2+y^2)^0.5+5x=0[-16 16 -8 8]}

Interestingly, limacons like this are from multi-loop forms

created by r = 6 - 5 cos n thetar=65cosnθ, n = 1.

Graph of r = 6 - 5 cos 3 thetar=65cos3θ, with n = 3:
graph{ (x^2+y^2)^2 -6(x^2+y^2)^1.5 +5(x^3-3xy^2)=0[-22 22 -11 11]}