How do you implicitly differentiate 2=e^(x-y)cosy 2=exycosy?

1 Answer
Mar 19, 2018

dy/dx=(cosy)/(siny+cosy)dydx=cosysiny+cosy

Explanation:

"differentiate "e^(x-y)cosy" using the "color(blue)"product rule"differentiate exycosy using the product rule

0=e^(x-y)(-siny)dy/dx+cosye^(x-y)(1-dy/dx)0=exy(siny)dydx+cosyexy(1dydx)

color(white)(0)=-e^(x-y)sinydy/dx+cosye^(x-y)-cosye^(x-y)dy/dx0=exysinydydx+cosyexycosyexydydx

rArrdy/dx(-e^(x-y)siny-cosye^(x-y))=-cosye^(x-y)dydx(exysinycosyexy)=cosyexy

rArrdy/dx=(-cosye^(x-y))/(-e^(x-y)(siny+cosy))=(cosy)/(siny+cosy)dydx=cosyexyexy(siny+cosy)=cosysiny+cosy