How do you implicitly differentiate 2=e^(x-y)cosy 2=ex−ycosy?
1 Answer
Mar 19, 2018
Explanation:
"differentiate "e^(x-y)cosy" using the "color(blue)"product rule"differentiate ex−ycosy using the product rule
0=e^(x-y)(-siny)dy/dx+cosye^(x-y)(1-dy/dx)0=ex−y(−siny)dydx+cosyex−y(1−dydx)
color(white)(0)=-e^(x-y)sinydy/dx+cosye^(x-y)-cosye^(x-y)dy/dx0=−ex−ysinydydx+cosyex−y−cosyex−ydydx
rArrdy/dx(-e^(x-y)siny-cosye^(x-y))=-cosye^(x-y)⇒dydx(−ex−ysiny−cosyex−y)=−cosyex−y
rArrdy/dx=(-cosye^(x-y))/(-e^(x-y)(siny+cosy))=(cosy)/(siny+cosy)⇒dydx=−cosyex−y−ex−y(siny+cosy)=cosysiny+cosy