How do you implicitly differentiate #2=e^(x-y)cosy #?
1 Answer
Mar 19, 2018
Explanation:
#"differentiate "e^(x-y)cosy" using the "color(blue)"product rule"#
#0=e^(x-y)(-siny)dy/dx+cosye^(x-y)(1-dy/dx)#
#color(white)(0)=-e^(x-y)sinydy/dx+cosye^(x-y)-cosye^(x-y)dy/dx#
#rArrdy/dx(-e^(x-y)siny-cosye^(x-y))=-cosye^(x-y)#
#rArrdy/dx=(-cosye^(x-y))/(-e^(x-y)(siny+cosy))=(cosy)/(siny+cosy)#