How do you implicitly differentiate 2=e^(x-y)cosy ?
1 Answer
Mar 19, 2018
Explanation:
"differentiate "e^(x-y)cosy" using the "color(blue)"product rule"
0=e^(x-y)(-siny)dy/dx+cosye^(x-y)(1-dy/dx)
color(white)(0)=-e^(x-y)sinydy/dx+cosye^(x-y)-cosye^(x-y)dy/dx
rArrdy/dx(-e^(x-y)siny-cosye^(x-y))=-cosye^(x-y)
rArrdy/dx=(-cosye^(x-y))/(-e^(x-y)(siny+cosy))=(cosy)/(siny+cosy)