"differentiate "color(blue)"implicitly with respect to x"differentiate implicitly with respect to x
"differentiate "ytan(xy)" using the "color(blue)"product rule"differentiate ytan(xy) using the product rule
d/dx(ytan(xy))ddx(ytan(xy))
=ysec^2(xy).(xdy/dx+y)+tan(xy).dy/dx=ysec2(xy).(xdydx+y)+tan(xy).dydx
=xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx=xysec2(xy)dydx+y2sec2(xy)+tan(xy)dydx
"differentiate "-xy" using the "color(blue)"product rule"differentiate −xy using the product rule
d/dx(-xy)=-xdy/dx-yddx(−xy)=−xdydx−y
"putting the right side all together"putting the right side all together
xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx-xdy/dx-yxysec2(xy)dydx+y2sec2(xy)+tan(xy)dydx−xdydx−y
=dy/dx(xysec^2(xy)+tan(xy)-x)+y^2sec^2(xy)-y=0=dydx(xysec2(xy)+tan(xy)−x)+y2sec2(xy)−y=0