How do you implicitly differentiate #2=ytanxy-xy #?
1 Answer
Aug 6, 2017
Explanation:
#"differentiate "color(blue)"implicitly with respect to x"#
#"differentiate "ytan(xy)" using the "color(blue)"product rule"#
#d/dx(ytan(xy))#
#=ysec^2(xy).(xdy/dx+y)+tan(xy).dy/dx#
#=xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx#
#"differentiate "-xy" using the "color(blue)"product rule"#
#d/dx(-xy)=-xdy/dx-y#
#"putting the right side all together"#
#xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx-xdy/dx-y#
#=dy/dx(xysec^2(xy)+tan(xy)-x)+y^2sec^2(xy)-y=0#