How do you implicitly differentiate 2=ytanxy-xy 2=ytanxyxy?

1 Answer
Aug 6, 2017

dy/dx=(y-y^2sec^2(xy))/(xysec^2(xy)+tan(xy)-x)dydx=yy2sec2(xy)xysec2(xy)+tan(xy)x

Explanation:

"differentiate "color(blue)"implicitly with respect to x"differentiate implicitly with respect to x

"differentiate "ytan(xy)" using the "color(blue)"product rule"differentiate ytan(xy) using the product rule

d/dx(ytan(xy))ddx(ytan(xy))

=ysec^2(xy).(xdy/dx+y)+tan(xy).dy/dx=ysec2(xy).(xdydx+y)+tan(xy).dydx

=xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx=xysec2(xy)dydx+y2sec2(xy)+tan(xy)dydx

"differentiate "-xy" using the "color(blue)"product rule"differentiate xy using the product rule

d/dx(-xy)=-xdy/dx-yddx(xy)=xdydxy

"putting the right side all together"putting the right side all together

xysec^2(xy)dy/dx+y^2sec^2(xy)+tan(xy)dy/dx-xdy/dx-yxysec2(xy)dydx+y2sec2(xy)+tan(xy)dydxxdydxy

=dy/dx(xysec^2(xy)+tan(xy)-x)+y^2sec^2(xy)-y=0=dydx(xysec2(xy)+tan(xy)x)+y2sec2(xy)y=0

rArrdy/dx=(y-y^2sec^2(xy))/(xysec^2(xy)+tan(xy)-x)dydx=yy2sec2(xy)xysec2(xy)+tan(xy)x