How do you implicitly differentiate #y= (x-y^2) e^(xy) #?
2 Answers
Explanation:
We could proceed using the product rule. In implicit differentiation, we must also remember to use the chain rule when differentiating a
Now gather all terms with
Explanation:
#"differentiate using the "color(blue)"product/chain rules"#
#"given "y=f(x)g(x)" then"#
#dy/dx=f(x)g'(x)+g(x)f'(x)larrcolor(blue)"product rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#f(x)=x-y^2rarrf'(x)=1-2ydy/dx#
#g(x)=e^(xy)rArrg'(x)=e^(xy)xxd/dx(xy)#
#color(white)(xxxxxxxxxxxxx)=e^(xy)(xdy/dx+y)#
#color(white)(xxxxxxxxxxxxx)=xe^(xy)dy/dx+ye^(xy)#
#(x-y^2)(xe^(xy)dy/dx+ye^(xy)))+e^(xy)(1-2ydy/dx)#
#y=(x-y^2)e^(xy)larrcolor(blue)"original question"#
#rArrdy/dx-x^2e^(xy)dy/dx+xy^2e^(xy)dy/dx+2ye^(xy)dy/dx=xye^(xy)-y^3e^(xy)+e^(xy)#
#rArrdy/dx(1-x^2e^(xy)+xy^2e^(xy)+2ye^(xy))=xye^(xy)-y^3e^(xy)+e^(xy)#
#rArrdy/dx=(xye^(xy)-y^3e^(xy)+e^(xy))/(1-x^2e^(xy)+xy^2e^(xy)+2ye^(xy))#