How do you integrate?

enter image source here

1 Answer
Mar 11, 2018

Use the substitution x+3=3sectheta.

Explanation:

Let

I=int(x-3)/sqrt(x^2+6x)dx

Complete the square in the square root:

I=int(x-3)/sqrt((x+3)^2-9)dx

Apply the substitution x+3=3sectheta:

I=int(3sectheta-6)/(3tantheta)(3secthetatanthetad theta)

Simplify:

I=3int(sec^2theta-2sectheta)d theta

Integrate directly:

I=3(tantheta-2ln|sectheta+tantheta|)+C

Rearrange:

I=3tantheta-6ln|3sectheta+3tantheta|+C

Reverse the substitution:

I=sqrt(x^2+6x)-6ln|x+3+sqrt(x^2+6x)|+C