How do you integrate?
1 Answer
Mar 11, 2018
Use the substitution
Explanation:
Let
I=int(x-3)/sqrt(x^2+6x)dx
Complete the square in the square root:
I=int(x-3)/sqrt((x+3)^2-9)dx
Apply the substitution
I=int(3sectheta-6)/(3tantheta)(3secthetatanthetad theta)
Simplify:
I=3int(sec^2theta-2sectheta)d theta
Integrate directly:
I=3(tantheta-2ln|sectheta+tantheta|)+C
Rearrange:
I=3tantheta-6ln|3sectheta+3tantheta|+C
Reverse the substitution:
I=sqrt(x^2+6x)-6ln|x+3+sqrt(x^2+6x)|+C