How do you integrate 1(12x)(1x) using partial fractions?

1 Answer
Jan 25, 2017

The answer is =ln(|12x|)+ln(|1x|)+C

Explanation:

Let's start the decomposition into partial fractions

1(12x)(1x)=A12x+B1x

=A(1x)+B(12x)(12x)(1x)

The denominators are the same ; so, we compare the numerators

1=A(1x)+B(12x)

Let x=1, , 1=B, , B=1

Let x=12, , 1=12A, , A=2

Therefore,

1(12x)(1x)=212x11x

so,

dx(12x)(1x)=2dx12x1dx1x

=2ln(|12x|)2+ln(|1x|)+C