How do you integrate 1/((1+x^2)^2)?

1 Answer
Oct 2, 2016

x/(2+2x^2)+arctanx/2+C

Explanation:

I=intdx/(1+x^2)^2

We will use the substitution x=tantheta, implying that dx=sec^2thetad theta:

I=int(sec^2thetad theta)/(1+tan^2theta)^2

Note that 1+tan^2theta=sec^2theta:

I=int(sec^2thetad theta)/sec^4theta=int(d theta)/sec^2theta=intcos^2thetad theta

Recall that cos2theta=2cos^2theta-1, so cos^2theta=1/2cos2theta+1/2.

I=1/2intcos2thetad theta+int1/2d theta

The first integral can be found with substitution (try u=2theta).

I=1/4sin2theta+1/2theta+C

From x=tantheta we see that theta=arctanx.

Furthermore, we see that 1/4sin2theta=1/4(2sinthetacostheta)=1/2sinthetacostheta.

Also, since tantheta=x, we can draw a right triangle with the side opposite theta being x, the adjacent side being 1, and the hypotenuse being sqrt(1+x^2). Thus, sintheta=x/sqrt(1+x^2) and costheta=1/sqrt(1+x^2):

I=1/2sinthetacostheta+1/2arctanx+C

I=1/2(x/sqrt(1+x^2))(1/sqrt(1+x^2))+arctanx/2+C

I=x/(2(1+x^2))+arctanx/2+C