How do you integrate 1/((1+x^2)^2)?
1 Answer
Explanation:
I=intdx/(1+x^2)^2
We will use the substitution
I=int(sec^2thetad theta)/(1+tan^2theta)^2
Note that
I=int(sec^2thetad theta)/sec^4theta=int(d theta)/sec^2theta=intcos^2thetad theta
Recall that
I=1/2intcos2thetad theta+int1/2d theta
The first integral can be found with substitution (try
I=1/4sin2theta+1/2theta+C
From
Furthermore, we see that
Also, since
I=1/2sinthetacostheta+1/2arctanx+C
I=1/2(x/sqrt(1+x^2))(1/sqrt(1+x^2))+arctanx/2+C
I=x/(2(1+x^2))+arctanx/2+C