How do you integrate 1s2(3s+5) using partial fractions?
1 Answer
Jun 25, 2016
Split apart the fraction using typical decomposition rules:
1s2(3s+5)=As+Bs2+C3s+5
Multiply through by
1=As(3s+5)+B(3s+5)+Cs2
Let
1=5B
B=15
Let
1=C(−53)2=C(259)
C=925
Arbitrarily let
1=A(5)(3⋅5+5)+15(3⋅5+5)+925(5)2
1=A(100)+4+9
−12=100A
A=−325
Thus:
1s2(3s+5)=−325s+15s2+925(3s+5)
So:
∫1s2(3s+5)ds=−325∫1sds+15∫s−2ds+925∫13s+5ds
Using typical integration rules (don't forget to substitute in the final integral):
=−325ln(|s|)−15s+325ln(|3s+5|)+C