How do you integrate 1s2(3s+5) using partial fractions?

1 Answer
Jun 25, 2016

Split apart the fraction using typical decomposition rules:

1s2(3s+5)=As+Bs2+C3s+5

Multiply through by s2(3s+5):

1=As(3s+5)+B(3s+5)+Cs2

Let s=0, making both the A and C terms become 0:

1=5B

B=15

Let s=53, making both the A and B terms become 0:

1=C(53)2=C(259)

C=925

Arbitrarily let s=5 to solve for A, using B=15 and C=925:

1=A(5)(35+5)+15(35+5)+925(5)2

1=A(100)+4+9

12=100A

A=325

Thus:

1s2(3s+5)=325s+15s2+925(3s+5)

So:

1s2(3s+5)ds=3251sds+15s2ds+92513s+5ds

Using typical integration rules (don't forget to substitute in the final integral):

=325ln(|s|)15s+325ln(|3s+5|)+C