How do you integrate 1 / ((x^2 + 1) (x^2 +4))1(x2+1)(x2+4) using partial fractions?

1 Answer
Sep 8, 2016

1/6{2arc tanx-arc tan (x/2)}+C16{2arctanxarctan(x2)}+C.

Explanation:

Let I=int1/((x^2+1)(x^2+4))dxI=1(x2+1)(x2+4)dx.

We will use the Method of Partial Fraction to decompose the

integrand 1/((x^2+1)(x^2+4))=1/((y+1)(y+4))1(x2+1)(x2+4)=1(y+1)(y+4), where, y=x^2y=x2.

For this, we have to find A,B in RR such that,

1/((y+1)(y+4))=A/(y+1)+B/(y+4).

Using Heavyside's Cover-up Method, we have,

A=[1/(y+4)]_(y=-1)=1/3.

B=[1/(y+1)]_(y=-4)=-1/3.

:. 1/((y+1)(y+4))=(1/3)/(y+1)+(-1/3)/(y+4). Since, y=x^2,

1/((x^2+1)(x^2+4))=1/3(1/(x^2+1))-1/3(1/(x^2+4)). Therefore,

I=1/3int(1/(x^2+1))dx-1/3int(1/(x^2+2^2))dx

=1/3arc tan x-1/3*1/2arc tan (x/2), i.e.,

I=1/6{2arc tanx-arc tan (x/2)}+C.

Enjoy Maths.!