How do you integrate 1/(x^2+3x+2) using partial fractions?

1 Answer
Nov 30, 2016

int frac 1 (x^2+3x+2) dx= ln (frac (x+1) (x+2))

Explanation:

Factorize the denominator:

x^2+3x+2 = (x+1)(x+2)

Now develop in partial fractions using parametric numerators:

frac 1 (x^2+3x+2) = A/(x+1)+B/(x+2)

Expand and equate the coefficient of the same order of the left side and right side numerators to determine A and B:

frac 1 (x^2+3x+2) = frac (A(x+2)+B(x+1)) ((x+1)(x+2)) = frac (Ax+2A+Bx+B) ((x+1)(x+2))= frac ((A+B)x+(2A+B)) ((x+1)(x+2))

So:

A+B=0
2A+B=1

Solving the system:

A=1
B=-1

Finally:

frac 1 (x^2+3x+2) = 1/(x+1)-1/(x+2)

We are now ready to integrate:

int frac 1 (x^2+3x+2) dx= int (1/(x+1)-1/(x+2))dx =

= int dx/(x+1)-int dx/(x+2) = ln(x+1) - ln(x+2) = ln (frac (x+1) (x+2))