How do you integrate #1/(x^2+x) dx#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Ratnaker Mehta Aug 15, 2016 #ln|x/(x+1)|+C# Explanation: Let #I=int1/(x^2+x)dx# #:. I=int1/(x(x+1))dx# #=int{(x+1)-x}/(x(x+1)) dx# #=int{(x+1)/(x(x+1))-x/(x(x+1))}dx# #=int{1/x-1/(x+1)}dx# #=ln|x|-ln|x+1|# #=ln|x/(x+1)|+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 117356 views around the world You can reuse this answer Creative Commons License