How do you integrate 1/[(x^3)-1] 1(x3)1 using partial fractions?

1 Answer
Jul 11, 2017

int1/(x^3-1) dx=1/6[2ln|x-1| -ln|x^2+x+1|-2sqrt3arctan(((2x+1)sqrt3)/3)]+"c"1x31dx=16[2ln|x1|lnx2+x+123arctan((2x+1)33)]+c

Explanation:

We need to find the partial fraction expansion of 1/(x^3-1)1x31.

Firstly, we need to rewrite x^3-1x31 as a product of irreducible polynomials. x^3-1=(x-1)(x^2+x+1)x31=(x1)(x2+x+1). It's easy to factorise this function since we know (x-1)(x1) is a root. Then we can use inspection or polynomial division to find the other function.

therefore1/(x^3-1)=1/((x-1)(x^2+x+1))=A/(x-1)+(Bx+C)/(x^2+x+1)

Since the numerator has to have a polynomial to a power one less than the denominator, the second term will have to have an x in the numerator.

1=A(x^2+x+1)+(Bx+C)(x-1)

A+B=0rArrA=-B (1)

A-B+C=0 (3)

A-C=1rArrC=A-1 (2)

Sub (1) and (2) into (3)

A+A+A-1=0

3A=1

A=1/3

B=-1/3

C=1/3-1=-2/3

therefore1/((x-1)(x^2+x+1))=1/(3(x-1))+(-1/3x-2/3)/(x^2+x+1)

=1/(3(x-1))-(x+2)/(3(x^2+x+1))

int1/(3(x-1)) -(x+2)/(3(x^2+x+1)) dx

=1/3ln|x-1| +"c"_1-1/3int(x+2)/(x^2+x+1) dx

(x+2)/(x^2+x+1) = 1/2((2(x+2))/(x^2+x+1))

= 1/2((2x+1)/(x^2+x+1) + 3/(x^2+x+1))

therefore-1/3int(x+2)/(x^2+x+1) dx

=-1/6int(2x+1)/(x^2+x+1) + 3/(x^2+x+1) dx

=-1/6ln|x^2+x+1|+"c"_2-1/6int3/(x^2+x+1) dx

-1/6int3/(x^2+x+1) dx=-3/6int1/((x+1/2)^2+3/4) dx

Let s=x+1/2 and ds=dx

-1/2int1/((x+1/2)^2+3/4) dx=-1/2int1/(s^2+3/4) ds

=-1/2int(4/3)/(4/3(s^2+3/4)) ds=-2/3int1/(4/3s^2+1) ds

Let p=2/sqrt3 s and dp=2/sqrt3ds

-2/3int1/(4/3s^2+1) ds=-1/sqrt3int1/(p^2+1) dp

=-1/sqrt3arctanp+"c"_3=-sqrt3/3arctan(((2x+1)sqrt3)/3)+"c"_3

Combining all three integrals gives

int1/(x^3-1) dx=1/3ln|x-1| -1/6ln|x^2+x+1|

-sqrt3/3arctan(((2x+1)sqrt3)/3)+"c"

=1/6[2ln|x-1| -ln|x^2+x+1|-2sqrt3arctan(((2x+1)sqrt3)/3)]+"c"