How do you integrate 1x35x2 using partial fractions?

1 Answer
May 13, 2016

1x2(x5)dx=125lnx+15x+125ln(x5)

Explanation:

Let us first find partial fractions of 1x35x2=1x2(x5) and for this let

1x2(x5)Ax+Bx2+Cx5 or

1x2(x5)Ax(x5)+B(x5)+Cx2x2(x5) or

1x2(x5)(A+C)x2+(B5A)x5Bx2(x5) or

Hence, A+C=0, B5A=0 and 5B=1 i.e.

B=15, A=15B=125 and C=125

Hence 1x2(x5)dx=[125x15x2+125(x5)]dx

= 125dxx15dxx2+125dxx5

= 125lnx+15x+125ln(x5)