How do you integrate #1/((x+6)(x^2+3))# using partial fractions?
1 Answer
Explanation:
Decomposing the fraction:
#1/((x+6)(x^2+3))=A/(x+6)+(Bx+C)/(x^2+3)#
So:
#1=A(x^2+3)+(Bx+C)(x+6)#
#1=Ax^2+3A+Bx^2+6Bx+Cx+6C#
Sorting by
#0x^2+0x+1=x^2(A+B)+x(6B+C)+(3A+6C)#
Comparing the coefficients:
#{(A+B=0),(6B+C=0),(3A+6C=1):}#
From the first equation we see that
Using this value in the second equation, we see that
Using these values:
#1/((x+6)(x^2+3))=(1/39)/(x+6)+(-1/39x+2/13)/(x^2+3)#
#1/((x+6)(x^2+3))=1/39 1/(x+6)+1/39(-x+6)/(x^2+3)#
So:
#I=int1/((x+6)(x^2+3))dx=1/39int1/(x+6)dx+1/39int(-x+6)/(x^2+3)#
And:
#I=1/39int1/(x+6)dx-1/39intx/(x^2+3)dx+6/39int1/(x^2+3)dx#
Letting
#I=1/39int1/udu-1/39intx/(x^2+3)dx+2/13int1/(x^2+3)dx#
#I=1/39lnabsu-1/39intx/(x^2+3)dx+2/13int1/(x^2+3)dx#
For the next integral, let
#I=1/39lnabsu-1/78int(2x)/(x^2+3)dx+2/13int1/(x^2+3)dx#
#I=1/39lnabsu-1/78int1/vdv+2/13int1/(x^2+3)dx#
#I=1/39lnabsu-1/78lnabsv+2/13int1/(x^2+3)dx#
Before moving onto the next integral, we can do a very sneaky simplification:
#I=2/78lnabsu-1/78lnabsv+2/13int1/(x^2+3)dx#
#I=1/78lnabs(u^2)-1/78lnabsv+2/13int1/(x^2+3)dx#
#I=1/78lnabs(u^2/v)+2/13int1/(x^2+3)dx#
With
#I=1/78lnabs((x+6)^2/(x^2+3))+2/13int1/(x^2+3)dx#
Note the absolute value bars aren't necessary since the function inside the logarithm is always positive:
#I=1/78ln((x+6)^2/(x^2+3))+2/13int1/(x^2+3)dx#
For the remaining integral, there are two courses of action. The first would be to use the arctangent integral formula:
The other, which I prefer since you don't have to remember the formula, is to use trigonometric substitution.
So, for
#I=1/78ln((x+6)^2/(x^2+3))+2/13int1/(3tan^2theta+3)(sqrt3sec^2thetad theta)#
#I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)intsec^2theta/(tan^2theta+1)d theta#
Since
#I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)intd theta#
From
#I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)arctan(x/sqrt3)+C#