How do you integrate 105x22x3 using partial fractions?

1 Answer
Feb 2, 2017

The answer is =2x+45ln(|x|)45ln(|2x5|)+C

Explanation:

5x22x3=x2(2x5)

Let's perform the decompostion into partial fractions

105x22x3=10(x2(2x5))

=Ax2+Bx+C2x5

=A(2x5)+Bx(2x5)+Cx2(x2(2x5))

The denpminators are the same, we can compare the numerators

10=A(2x5)+Bx(2x5)+Cx2

Let x=0, , 10=5A, , A=2

Let x=52, , 10=254C, , C=85

Coefficients of x2

0=2B+C, , B=C2=1285=45

Therefore,

105x22x3=2x2+45x+852x5

So,

10dx5x22x3=2dxx2+45dxx85dx2x5

=2x+45ln(|x|)45ln(|2x5|)+C