How do you integrate 10/[(x-1)(x^2+9)] dx?

1 Answer
Jun 17, 2015

10/((x-1)(x^2+9)) = 1/(x-1) + (-x-1)/(x^2+9) = 1/(x-1) - x/(x^2+9) - 1/(x^2+9)

Explanation:

10/((x-1)(x^2+9)) = A/(x-1) + (Bx+C)/(x^2+9)

So we want: Ax^2+9A +Bx^2-Bx+Cx-C = 10
Hence:
A+B =0
-B+C=0
9A-C=10

The second equation gives us: B=C, so
A+C =0
9A-C=10, adding gets us:

10A=10, so A=1 and B=C =-1

And 10/((x-1)(x^2+9)) = 1/(x-1) + (-x-1)/(x^2+9) = 1/(x-1) - x/(x^2+9) - 1/(x^2+9),

so

int 10/((x-1)(x^2+9)) dx = int 1/(x-1) dx - int x/(x^2+9) dx - int1/(x^2+9) dx

= ln abs(x-1) -1/2 ln(x^2+9) - 1/3 tan^(-1) (x/3) +C