How do you integrate #2/((x-1)^2(x+1))# using partial fractions?
1 Answer
Apr 8, 2017
#int 2/((x-1)^2(x+1)) dx#
#= -1/2 ln abs(x-1)-1/(x-1)+1/2ln abs(x+1) + C#
Explanation:
#2/((x-1)^2(x+1)) = A/(x-1)+B/(x-1)^2+C/(x+1)#
#color(white)(2/((x-1)^2(x+1))) = (A(x-1)(x+1)+B(x+1)+C(x-1)^2)/((x-1)^2(x+1))#
#color(white)(2/((x-1)^2(x+1))) = ((A+C)x^2+(B-2C)x+(-A+B+C))/((x-1)^2(x+1))#
Equating coefficients, we find:
#{ (A+C=0), (B-2C=0), (-A+B+C=2) :}#
Adding all three equations together, we find:
#2B=2#
and hence:
#B=1#
Then from the second equation we find:
#C=1/2#
Then from the first equation we find:
#A=-1/2#
So:
#int 2/((x-1)^2(x+1)) dx#
#= int -1/2(1/(x-1))+1/(x-1)^2+1/2(1/(x+1)) dx#
#= -1/2 ln abs(x-1)-1/(x-1)+1/2ln abs(x+1) + C#