How do you integrate #2/((x-1)^2(x+1))# using partial fractions?

1 Answer
Apr 8, 2017

#int 2/((x-1)^2(x+1)) dx#

#= -1/2 ln abs(x-1)-1/(x-1)+1/2ln abs(x+1) + C#

Explanation:

#2/((x-1)^2(x+1)) = A/(x-1)+B/(x-1)^2+C/(x+1)#

#color(white)(2/((x-1)^2(x+1))) = (A(x-1)(x+1)+B(x+1)+C(x-1)^2)/((x-1)^2(x+1))#

#color(white)(2/((x-1)^2(x+1))) = ((A+C)x^2+(B-2C)x+(-A+B+C))/((x-1)^2(x+1))#

Equating coefficients, we find:

#{ (A+C=0), (B-2C=0), (-A+B+C=2) :}#

Adding all three equations together, we find:

#2B=2#

and hence:

#B=1#

Then from the second equation we find:

#C=1/2#

Then from the first equation we find:

#A=-1/2#

So:

#int 2/((x-1)^2(x+1)) dx#

#= int -1/2(1/(x-1))+1/(x-1)^2+1/2(1/(x+1)) dx#

#= -1/2 ln abs(x-1)-1/(x-1)+1/2ln abs(x+1) + C#