How do you integrate 2 / (x(4x-1)) using partial fractions?

1 Answer
Aug 6, 2016

int2/(x(4x-1))dx=-2ln|x|+2ln|4x-1|+c

Explanation:

Let 2/(x(4x-1))hArrA/x+B/(4x-1) or

2/(x(4x-1))hArr(A(4x-1)+Bx)/(x(4x-1)) or

2/(x(4x-1))hArr((4A+B)x-A)/(x(4x-1))

Hence 4A+B=0 and -A=2, i.e. A=-2 and B=-4A=8 and

2/(x(4x-1))=-2/x+8/(4x-1)

Hence int2/(x(4x-1))dx=int[-2/x+8/(4x-1)]dx

= -2int(dx)/x+8int1/(4x-1)dx

= -2ln|x|+8(1/4ln(4x-1))+c

= -2ln|x|+2ln|4x-1|+c