How do you integrate 2x(4x−1) using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Shwetank Mauria Jun 17, 2016 ∫2x(4x−1)dx=−2lnx+2ln(4x−1)=2ln(4x−1x) Explanation: Partial fractions of 2x(4x−1) are given by 2x(4x−1)⇔Ax+B4x−1 or 2x(4x−1)⇔A(4x−1)+Bxx(4x−1) or 2x(4x−1)⇔x(4A+B)−Ax(4x−1) i.e. A=−2 and 4A+B=0 i.e. B=−4A=8 Hence 2x(4x−1)=−2x+84x−1 and ∫2x(4x−1)dx=∫(−2x+84x−1)dx = −2lnx+8×14×ln(4x−1) = −2lnx+2ln(4x−1)=2ln(4x−1x) Answer link Related questions How do I find the partial fraction decomposition of 2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of 1x3+2x2+x ? How do I find the partial fraction decomposition of x4+1x5+4x3 ? How do I find the partial fraction decomposition of x4x4−1 ? How do I find the partial fraction decomposition of t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral ∫t2t+4dt ? How do I find the integral ∫x−9(x+5)(x−2)dx ? How do I find the integral ∫1(w−4)(w+1)dw ? How do I find the integral ∫dxx2(x−1)2 ? How do I find the integral ∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 1259 views around the world You can reuse this answer Creative Commons License