How do you integrate (2x-82)/(x^2+2x-48) dx using partial fractions?

1 Answer
Oct 15, 2016

7ln(x+8)-5ln(x-6)+C

Explanation:

int(2x-82)dx/(x^2+2x-48)
(2x-82)/(x^2+2x-48)=(2x-82)/((x-6)(x+8))=A/(x-6)+B/(x+8) =(A(x+8) +B(x-6))/((x-6)(x+8))
2x-82=A(x+8) +B(x-6)
if x=6 ; -70=14A ; A=-5
if x=-8 ; 98=-14B , B=7
int(2x-82)dx/(x^2+2x-48)=int7dx/(x+8)-int5dx/(x-6
=7ln(x+8)-5ln(x-6)+C