How do you integrate (-2x)/((x^2+2x+2)^2) ?

1 Answer
Apr 1, 2018

arctan(x+1)-(x^2-2)/(2x^2+4x+4)+C

Explanation:

int (-2x)/(x^2+2x+2)^2*dx

=int (-2x)/((x+1)^2+1)^2*dx

After using x+1=tanu, x=tanu-1 and dx=(secu)^2*du transforms, this integral became

-int 2(tanu-1)*((secu)^2*du)/(secu)^4

=-int 2(tanu-1)*(cosu)^2*du

=int 2(cosu)^2*du-int 2tanu*(cosu)^2*du

=int 2(cosu)^2*du-int 2sinu*cosu*du

=int (1+cos2u)*du-int sin2u*du

=u+1/2sin2u+1/2cos2u+C

=u+1/2*(2tanu)/((tanu)^2+1)+1/2*(1-(tanu)^2)/(1+(tanu)^2)+C

=u+tanu/((tanu)^2+1)+1/2*(1-(tanu)^2)/(1+(tanu)^2)+C

After using x+1=tanu and u=arctan(x+1) inverse transforms, I found

int (-2x)/(x^2+2x+2)^2*dx

=arctan(x+1)+(x+1)/(x^2+2x+2)+1/2*(-x^2-2x)/(x^2+2x+2)+C

=arctan(x+1)-(x^2-2)/(2x^2+4x+4)+C