int (-2x)/(x^2+2x+2)^2*dx
=int (-2x)/((x+1)^2+1)^2*dx
After using x+1=tanu, x=tanu-1 and dx=(secu)^2*du transforms, this integral became
-int 2(tanu-1)*((secu)^2*du)/(secu)^4
=-int 2(tanu-1)*(cosu)^2*du
=int 2(cosu)^2*du-int 2tanu*(cosu)^2*du
=int 2(cosu)^2*du-int 2sinu*cosu*du
=int (1+cos2u)*du-int sin2u*du
=u+1/2sin2u+1/2cos2u+C
=u+1/2*(2tanu)/((tanu)^2+1)+1/2*(1-(tanu)^2)/(1+(tanu)^2)+C
=u+tanu/((tanu)^2+1)+1/2*(1-(tanu)^2)/(1+(tanu)^2)+C
After using x+1=tanu and u=arctan(x+1) inverse transforms, I found
int (-2x)/(x^2+2x+2)^2*dx
=arctan(x+1)+(x+1)/(x^2+2x+2)+1/2*(-x^2-2x)/(x^2+2x+2)+C
=arctan(x+1)-(x^2-2)/(2x^2+4x+4)+C