How do you integrate ((3x2)25x+43)dx(2x+1)((x2)2)?

1 Answer
Sep 14, 2015

92ln|2x+1|3ln|x2|1x2+C

Explanation:

Lets rewrite integrand 3x225x+43(2x+1)(x2)2 as follows:

3x225x+43(2x+1)(x2)2=A2x+1+Bx2+C(x2)2=

=A(x2)2+B(2x+1)(x2)+C(2x+1)(2x+1)(x2)2=

=A(x24x+4)+B(2x23x2)+C(2x+1)(2x+1)(x2)2=

=Ax24Ax+4A+2Bx23Bx2B+2Cx+C(2x+1)(x2)2=

=x2(A+2B)+x(4A3B+2C)+(4A2B+C)(2x+1)(x2)2

Comparing with integrand coefficients we get system of linear equations with 3 unknowns:

A+2B=3A=32B
4A3B+2C=25
4A2B+C=43

From 1st eq insert into the 2nd and 3rd:

4(32B)3B+2C=25
4(32B)2B+C=43

12+8B3B+2C=25
128B2B+C=43

5B+2C=13
10B+C=31

5B+2C=13
20B+2C=62

25B=75B=3
C=31+10B=3130=1C=1
A=32B=3+6=9A=9

So, the integral is broken apart:

92x+1dx+3x2dx+1(x2)2dx=I

2x+1=t,2dx=dt,dx=dt2,

x2=u,dx=du,

x2=m,dx=dm

I=9tdt2+3udu+1m2dm=

=92dtt3duu+m2dm=

=92ln|t|3ln|u|+m11+C=

=92ln|2x+1|3ln|x2|1x2+C