How do you integrate (3x+2) / (x^(2)+3x-4)dx using partial fractions?

1 Answer
Sep 14, 2016

ln|x-1|+2ln|x+4|+C,

or,

ln|(x-1)(x+4)^2|+C.

Explanation:

Let I=int(3x+2)/(x^2+3x-4)dx=int(3x+2)/((x-1)(x+4))dx

To decompose the integrand using Method of Partial Fraction, let,

(3x+2)/((x-1)(x+4))=A/(x-1)+B/(x+4)", where, "A,B in RR.

We use Heavyside's Cover-up Method to determine A, and, B :

A=[(3x+2)/(x+4)]_(x=1) =(3+2)/(1+4)=1

B=[(3x+2)/(x-1)]_(x=-4) =(-12+2)/(-4-1)=2. Hence,

I=int[1/(x-1)+2/(x+4)]dx

=int1/(x-1)dx+2int1/(x+4)dx

=ln|x-1|+2ln|x+4|

Therefore,

I=ln|x-1|+2ln|x+4+C|, or,

I=ln|(x-1)(x+4)^2|+C.

Enjoy Maths.!