How do you integrate (3x) / (x^2 * (x^2+1) ) using partial fractions?

1 Answer
Jan 20, 2017

3/2ln{x^2/(x^2+1)}+C.

Explanation:

Let I=int(3x)/{x^2(x^2+1)}dx

Substitute x^2=t," so that, "2xdx=dt, or, xdx=1/2dt

:. I=3int(1/2)/{t(t+1)}dt=3/2int{(t+1)-t}/{t(t+1)}dt

=3/2int[(t+1)/{t(t+1)}-t/{t(t+1)}]dt

=3/2int[1/t-1/(t+1)]dt

=3/2[ln|t|-ln|t+1|]

=3/2ln|t/(t+1)|, and, because, t=x^2,

I=3/2ln{x^2/(x^2+1)}+C.

Enjoy Maths.!