How do you integrate (5x^2-9x)/((x-4)(x-1)^2) using partial fractions?
1 Answer
Explanation:
(5x^2-9x)/((x-4)(x-1)^2) = A/(x-4)+B/(x-1)^2+C/(x-1)
color(white)((5x^2-9x)/((x-4)(x-1)^2)) = (A(x-1)^2+B(x-4)+C(x-4)(x-1))/((x-4)(x-1)^2)
color(white)((5x^2-9x)/((x-4)(x-1)^2)) = (A(x^2-2x+1)+B(x-4)+C(x^2-5x+4))/((x-4)(x-1)^2)
color(white)((5x^2-9x)/((x-4)(x-1)^2)) = ((A+C)x^2+(-2A+B-5C)x+(A-4B+4C))/((x-4)(x-1)^2)
Equating coefficients we get this system of linear equations:
{ (A+C=5), (-2A+B-5C=-9), (A-4B+4C=0) :}
Adding all three equations, we find:
-3B = -4
So
Adding twice the first equation to the second, we get:
B-3C=1
Hence:
3C = B-1 = 4/3-1 = 1/3
So
Then from the first equation:
color(blue)(A=)5-C = 5-1/9 = color(blue)(44/9)
So:
int (5x^2-9x)/((x-4)(x-1)^2) dx = int (44/9 * 1/(x-4)+4/3 * 1/(x-1)^2 +1/9 * 1/(x-1)) dx
color(white)(int (5x^2-9x)/((x-4)(x-1)^2) dx) = 44/9 ln abs(x-4) - 4/(3(x-1)) + 1/9 ln abs(x-1) + C