How do you integrate (5x^2-9x)/((x-4)(x-1)^2) using partial fractions?

1 Answer
Oct 8, 2016

int (5x^2-9x)/((x-4)(x-1)^2) dx = 44/9 ln abs(x-4) - 4/(3(x-1)) + 1/9 ln abs(x-1) + C

Explanation:

(5x^2-9x)/((x-4)(x-1)^2) = A/(x-4)+B/(x-1)^2+C/(x-1)

color(white)((5x^2-9x)/((x-4)(x-1)^2)) = (A(x-1)^2+B(x-4)+C(x-4)(x-1))/((x-4)(x-1)^2)

color(white)((5x^2-9x)/((x-4)(x-1)^2)) = (A(x^2-2x+1)+B(x-4)+C(x^2-5x+4))/((x-4)(x-1)^2)

color(white)((5x^2-9x)/((x-4)(x-1)^2)) = ((A+C)x^2+(-2A+B-5C)x+(A-4B+4C))/((x-4)(x-1)^2)

Equating coefficients we get this system of linear equations:

{ (A+C=5), (-2A+B-5C=-9), (A-4B+4C=0) :}

Adding all three equations, we find:

-3B = -4

So color(blue)(B=4/3)

Adding twice the first equation to the second, we get:

B-3C=1

Hence:

3C = B-1 = 4/3-1 = 1/3

So color(blue)(C=1/9)

Then from the first equation:

color(blue)(A=)5-C = 5-1/9 = color(blue)(44/9)

So:

int (5x^2-9x)/((x-4)(x-1)^2) dx = int (44/9 * 1/(x-4)+4/3 * 1/(x-1)^2 +1/9 * 1/(x-1)) dx

color(white)(int (5x^2-9x)/((x-4)(x-1)^2) dx) = 44/9 ln abs(x-4) - 4/(3(x-1)) + 1/9 ln abs(x-1) + C