How do you integrate 6/((x-5)(x^2-2x+3))6(x5)(x22x+3) using partial fractions?

1 Answer
May 17, 2018

I=1/3ln|x-5|-1/6ln|x^2-2x+3|-4/(3sqrt2)tan^-1((x-1)/sqrt2)I=13ln|x5|16lnx22x+3432tan1(x12)+c

Explanation:

Here,

I=int6/((x-5)(x^2-2x+3))dxI=6(x5)(x22x+3)dx

Partial Fractions :

color(blue)(6/((x-5)(x^2-2x+3))=A/(x-5)+(Bx+C)/(x^2-2x+3)6(x5)(x22x+3)=Ax5+Bx+Cx22x+3

=>6=A(x^2-2x+3)+Bx(x-5)+C(x-5)6=A(x22x+3)+Bx(x5)+C(x5)

=>6=x^2(A+B)+x(-2A-5B+C)+3A-5C6=x2(A+B)+x(2A5B+C)+3A5C

Comparing Coefficient of x^2, x and constant term,

A+B=0=>A=-Bto(1)A+B=0A=B(1)

-2A-5B+C=0to(2) 2A5B+C=0(2)

3A-5C=6to(3)3A5C=6(3)

Subst. A=-BA=B into (2)(2)

:.2B-5B+C=0=>-3B+C=0=>C=3B

From (3) we get,

3(-B)-5(3B)=6=>-18B=6=>B=-1/3

From, (1) A=-(-1/3)=1/3 and C=3(-1/3)=-1

i.e. color(blue)( A=1/3,B=-1/3,C=-1

So

I=int(1/3)/(x-5)dx+int((-1/3x)-1)/(x^2-2x+3)dx

=1/3int1/(x-5)dx-1/3int(x+3)/(x^2-2x+3)dx

=1/3ln|x-5|-1/3*1/2int(2x+6)/(x^2-2x+3)dx

=1/3ln|x-5|-1/6int(2x-2+8)/(x^2-2x+3)dx

=1/3ln|x-5|-1/6int(2x-2)/(x^2-2x+3)dx-1/6int8/(x^2-2x+3)dx

=1/3ln|x-5|-1/6int(d/(dx)(x^2-2x+3))/(x^2-2x+3)dx

color(white)(.........................).-8/6int1/((x^2-2x+1+2))dx

=1/3ln|x-5|-1/6ln|x^2-2x+3|
color(white)(..............................)-4/3color(red)(int1/((x-1)^2+(sqrt2)^2)dx

=1/3ln|x-5|-1/6ln|x^2-2x+3|-4/3*color(red)(1/sqrt2 tan^-1((x-1)/sqrt2)+ c

I=1/3ln|x-5|-1/6ln|x^2-2x+3|-4/(3sqrt2)tan^-1((x-1)/sqrt2)+c

Note :

color(red)(int1/(x^2+a^2)dx=1/atan^-1(x/a)+c