How do you integrate (6x)/(x^3-8) using partial fractions?

1 Answer
Jan 8, 2017

The answer is =ln(∣x-2∣)-1/2ln(∣x^2+2x+4∣)+4/sqrt3arctan((x+1)/sqrt3)+C

Explanation:

The denominator is

x^3-8=(x-2)(x^2+2x+4)

Therefore,

(6x)/(x^3-8)=(6x)/((x-2)(x^2+2x+4))

=A/(x-2)+(Bx+C)/(x^2+2x+4)

=(A(x^2+2x+4)+(Bx+C)(x-2))/((x-2)(x^2+2x+4))

So,

6x=A(x^2+2x+4)+(Bx+C)(x-2)

Let x=2, =>, 12=12A, =>, A=1

Let x=0, =>, 0=4A-2C, =>, C=2

Coefficients of x^2, =>, 0=A+B, =>, B=-1

Therefore,

(6x)/(x^3-8)=1/(x-2)+(-x+2)/(x^2+2x+4)

So,

int(6xdx)/(x^3-8)=intdx/(x-2)-int((x-2)dx)/(x^2+2x+4)

We integrate separately

intdx/(x-2)=ln(∣x-2∣)

int((x-2)dx)/(x^2+2x+4)=int((x+2-4)dx)/(x^2+2x+4)

=int((x+2)dx)/(x^2+2x+4)-int(4dx)/(x^2+2x+4)

Let u=x^2+2x+4, =>, du=(2x+2)dx

Therefore,

int((x+2)dx)/(x^2+2x+4)=1/2int(du)/u=1/2lnu

=1/2ln(∣x^2+2x+4∣)

x^2+2x+4=x^2+2x+1+3=(x+1)^2+3

int(4dx)/(x^2+2x+4)=4int(dx)/((x+1)^2+3)

=4int(dx)/(3(((x+1)/sqrt3)^2+1))

=4/3int(dx)/((((x+1)/sqrt3)^2+1))

Let tantheta=(x+1)/sqrt3=> sec^2theta d theta=dx/sqrt3

Therefore,

4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/3int(sqrt3 sec^2 theta d theta)/(1+ tan^2theta)

But 1+tan^2 theta=sec^2theta

4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/sqrt3intd theta

=4/sqrt3arctan((x+1)/sqrt3)