The denominator is
x^3-8=(x-2)(x^2+2x+4)
Therefore,
(6x)/(x^3-8)=(6x)/((x-2)(x^2+2x+4))
=A/(x-2)+(Bx+C)/(x^2+2x+4)
=(A(x^2+2x+4)+(Bx+C)(x-2))/((x-2)(x^2+2x+4))
So,
6x=A(x^2+2x+4)+(Bx+C)(x-2)
Let x=2, =>, 12=12A, =>, A=1
Let x=0, =>, 0=4A-2C, =>, C=2
Coefficients of x^2, =>, 0=A+B, =>, B=-1
Therefore,
(6x)/(x^3-8)=1/(x-2)+(-x+2)/(x^2+2x+4)
So,
int(6xdx)/(x^3-8)=intdx/(x-2)-int((x-2)dx)/(x^2+2x+4)
We integrate separately
intdx/(x-2)=ln(∣x-2∣)
int((x-2)dx)/(x^2+2x+4)=int((x+2-4)dx)/(x^2+2x+4)
=int((x+2)dx)/(x^2+2x+4)-int(4dx)/(x^2+2x+4)
Let u=x^2+2x+4, =>, du=(2x+2)dx
Therefore,
int((x+2)dx)/(x^2+2x+4)=1/2int(du)/u=1/2lnu
=1/2ln(∣x^2+2x+4∣)
x^2+2x+4=x^2+2x+1+3=(x+1)^2+3
int(4dx)/(x^2+2x+4)=4int(dx)/((x+1)^2+3)
=4int(dx)/(3(((x+1)/sqrt3)^2+1))
=4/3int(dx)/((((x+1)/sqrt3)^2+1))
Let tantheta=(x+1)/sqrt3=> sec^2theta d theta=dx/sqrt3
Therefore,
4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/3int(sqrt3 sec^2 theta d theta)/(1+ tan^2theta)
But 1+tan^2 theta=sec^2theta
4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/sqrt3intd theta
=4/sqrt3arctan((x+1)/sqrt3)