How do you integrate 8 / [ ( x + 2 ) ( x^2 + 4 ) ] 8(x+2)(x2+4) using partial fractions?

1 Answer
Apr 15, 2017

Please see the explanation.

Explanation:

Decompose: 8/(( x + 2 ) ( x^2 + 4 ))8(x+2)(x2+4)

8/(( x + 2 ) ( x^2 + 4 )) = A/(x+2)+ (Bx)/(x^2+4) + C/(x^2+4)8(x+2)(x2+4)=Ax+2+Bxx2+4+Cx2+4

Multiply both sides by ( x + 2 ) ( x^2 + 4 )(x+2)(x2+4):

8 = A( x^2 + 4 ) + Bx( x + 2 ) + C(x + 2)8=A(x2+4)+Bx(x+2)+C(x+2)

Let x = -2x=2:

8 = A( (-2)^2 + 4 ) + B(-2)( -2 + 2 ) + C(-2 + 2)8=A((2)2+4)+B(2)(2+2)+C(2+2)

8 = A(8) + B(-2)(0) + C(0)8=A(8)+B(2)(0)+C(0)

A = 1A=1

4 - x^2 = Bx( x + 2 ) + C(x + 2)4x2=Bx(x+2)+C(x+2)

Let x = 0x=0

4-0^2 = B(0)( 0 + 2 ) + C(0 + 2)402=B(0)(0+2)+C(0+2)

4 = 2C4=2C

C = 2C=2

4 - x^2 = Bx( x + 2 ) + 2x + 44x2=Bx(x+2)+2x+4

- x^2 -2x= Bx( x + 2 )x22x=Bx(x+2)

B = -1B=1

int8/(( x + 2 ) ( x^2 + 4 ))dx = int1/(x+2)dx- intx/(x^2+4)dx + int2/(x^2+4)dx8(x+2)(x2+4)dx=1x+2dxxx2+4dx+2x2+4dx

The first integral is the natural logarithm:

int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- intx/(x^2+4)dx + int2/(x^2+4)dx8(x+2)(x2+4)dx=ln|x+2|xx2+4dx+2x2+4dx

Multiple the second integral by 2/222 and it, too, becomes a natural logarithm but without an absolute value, because the argument can never be negative:

int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- 1/2ln(x^2+4) + int2/(x^2+4)dx8(x+2)(x2+4)dx=ln|x+2|12ln(x2+4)+2x2+4dx

The last integral is our old friend the inverse tangent:

int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- 1/2ln(x^2+4) + tan^-1(x/2)+C8(x+2)(x2+4)dx=ln|x+2|12ln(x2+4)+tan1(x2)+C