How do you integrate (8x)/(4x^2+1)?

1 Answer
Aug 10, 2015

int (8x)/(4x^2+1)\ dx=ln(4x^2+1)+C

Explanation:

Do a substitution: let u=4x^2+1 so du = 8x\ dx. Therefore,

int (8x)/(4x^2+1)\ dx=int 1/u\ du=ln|u|+C

=ln|4x^2+1|+C.

Since 4x^2+1 geq 1 > 0 for all x in RR, we can get rid of the absolute value signs and write:

int (8x)/(4x^2+1)\ dx=ln(4x^2+1)+C