How do you integrate (9x^2 + 1) /( x^2(x − 2)^2) using partial fractions?

1 Answer
Feb 28, 2017

The answer is =-1/(4x)-37/(4(x-2))+1/4ln(|x|)-1/4ln(|x-2|)+C

Explanation:

We perform the decomposition into partial fractions

(9x^2+1)/(x^2(x-2)^2)=A/(x^2)+B/(x)+C/(x-2)^2+D/(x-2)

=(A(x-2)^2+B(x(x-2)^2)+C(x^2)+D(x^2(x-2)))/(x^2(x-2)^2)

As the denominators are the same, we compare the numerators

9x^2+1=A(x-2)^2+B(x(x-2)^2)+C(x^2)+D(x^2(x-2))

Let x=0, =>, 1=4A, =>, A=1/4

Let x=2, =>, 37=4C, =>, C=37/4

Coefficients of x^2

9=A-4B+C-2D

Coeficients of x,

0=-4A+4B, =>, B=A=1/4

1/4-1+37/4-2D=9

2D=37/4-3/4-9=34/4-9=-2/4=-1/2

D=-1/4

So,

(9x^2+1)/(x^2(x-2)^2)=(1/4)/(x^2)+(1/4)/(x)+(37/4)/(x-2)^2+(-1/4)/(x-2)

Therefore,

int((9x^2+1)dx)/(x^2(x-2)^2)=1/4intdx/(x^2)+1/4intdx/(x)+37/4intdx/(x-2)^2-1/4intdx/(x-2)

=-1/(4x)-37/(4(x-2))+1/4ln(|x|)-1/4ln(|x-2|)+C