How do you integrate (9x)/(9x^2+3x-2) using partial fractions?

1 Answer
Nov 22, 2016

The answer is ==1/3ln(3x-1)+2/3ln(3x+2)+C

Explanation:

Let's factorise the denominator

9x^2+3x-2=(3x-1)(3x+2)

Now, we can start by the decomposition into partial fractions

(9x)/(9x^2+3x-2)=(9x)/((3x-1)(3x+2))=A/(3x-1)+B/(3x+2)

=(A(3x+2)+B(3x-1))/((3x-1)(3x+2))

Therefore,

9x=A(3x+2)+B(3x-1)

Let x=0, =>, 0=2A-B

Coefficients of x,

9=3A+3B, =>, A+B=3

Solving for A and B, we get A=1 and B=2

So,
(9x)/(9x^2+3x-2)=1/(3x-1)+2/(3x+2)

int(9xdx)/(9x^2+3x-2)=intdx/(3x-1)+int(2dx)/(3x+2)

=1/3ln(3x-1)+2/3ln(3x+2)+C