The function is
#f(x)=(x^2-2x)/((x^2-3)(x-2)(x+8))#
#=(xcancel(x-2))/((x^2-3)cancel(x-2)(x+8))#
#=x/((x^2-3)(x+8))#
Perform the decomposition into partial fractions
#x/((x^2-3)(x+8))=(Ax+B)/(x^2-3)+C/(x+8)#
#=((Ax+B)(x+8)+(C)(x^2-3))/((x^2-3)(x+8))#
The denominators are the same, compare the numerators
#x=(Ax+B)(x+8)+(C)(x^2-3)#
Compare the LHS and the RHS
Coefficients of #x^2#, #=>#, #0=A+C#, #=>#, #A=-C#
Let #x=-8#, #=>#, #-8=61C#, #=>#, #C=-8/61#
#A=8/61#
#0=8B-3C#, #=>#, #B=3/8*-8/61=-3/61#
Therefore,
#x/((x^2-3)(x+8))=(8/61x-3/61)/(x^2-3)+(-8/61)/(x+8)#
The integral is
#int(xdx)/((x^2-3)(x+8))=1/61int((8x-3)dx)/(x^2-3)-8/61int(dx)/(x+8)#
#I=I_1-I_2#
#I_2=8/61int(8dx)/(x+8)=8/61ln(x+8)#
For the calculation of #I_2#, perform the decomposition into partial fractions.
#(8x-3)/(x^2-3)=A/(x+sqrt3)+B/(x-sqrt3)#
#=(A(x-sqrt3)+B(x+sqrt3))/(x^2-3)#
Comparing the numerators,
#8x-3=A(x-sqrt3)+B(x+sqrt3)#
Let #x=-sqrt3#, #=>#, #-8sqrt3-3=A*-2sqrt3#, #=>#, #A=(8sqrt3+3)/(2sqrt3)=4+1/2sqrt3#
Let #x=sqrt3#, #=>#, #8sqrt3-3=B*2sqrt3#, #=>#, #B=(8sqrt3-3)/(2sqrt3)=4-1/2sqrt3#
Therefore,
#(8x-3)/(x^2-3)=(4+1/2sqrt3)/(x+sqrt3)+(4-1/2sqrt3)/(x-sqrt3)#
So,
#I_1=1/61int((8x-3)dx)/(x^2-3)=1/61int((4+1/2sqrt3)dx)/(x+sqrt3)+1/61int((4-1/2sqrt3)dx)/(x-sqrt3)#
#=(4+1/2sqrt3)/61ln(x+sqrt3)+(4-1/2sqrt3)/61ln(x-sqrt3)#
#=(8+sqrt3)/122ln(x+sqrt3)+(8-sqrt3)/122ln(x-sqrt3)#
And finally,
#int(xdx)/((x^2-3)(x+8))=(8+sqrt3)/122ln(|x+sqrt3|)+(8-sqrt3)/122ln(|x-sqrt3|)-8/61ln(|x+8|)+C#