How do you integrate int 1/(sqrtx(1+sqrtx)^2dx from [1,9]?
1 Answer
Jan 14, 2017
Explanation:
I=int_1^9 1/(sqrtx(1+sqrtx)^2)dx
We will use the substitution
I=2int_1^9(1+sqrtx)^(-2)(1/(2sqrtx)dx)
Before switching from
I=2int_2^4u^-2du
Using
I=2[u^(-1)/(-1)]_2^4=2[-1/u]_2^4=2(-1/4-(-1/2))
I=2(-1/4+1/2)=2(1/4)=1/2