How do you integrate int 1/(sqrtx(1+sqrtx)^2dx from [1,9]?

1 Answer
Jan 14, 2017

int_1^9 1/(sqrtx(1+sqrtx)^2)dx=1/2

Explanation:

I=int_1^9 1/(sqrtx(1+sqrtx)^2)dx

We will use the substitution u=1+sqrtx. Differentiating this reveals that du=1/(2sqrtx)dx. We can rewrite the integral to make both of these evident:

I=2int_1^9(1+sqrtx)^(-2)(1/(2sqrtx)dx)

Before switching from dx to du, change the variables of x=1 and x=9 by plugging them into u=1+sqrtx.

x=1 becomes u=1+sqrt1=2 and x=9 becomes u=1+sqrt9=4. Then:

I=2int_2^4u^-2du

Using intu^ndu=u^(n+1)/(n+1):

I=2[u^(-1)/(-1)]_2^4=2[-1/u]_2^4=2(-1/4-(-1/2))

I=2(-1/4+1/2)=2(1/4)=1/2