How do you integrate int ( 1/((x+1)^2+4)) using partial fractions?

1 Answer
Sep 12, 2016

1/2arctan((x+1)/2)+C

Explanation:

This cannot be expressed using partial fractions. However, we can integrate this using trigonometric substitutions.

intdx/((x+1)^2+4)

Let x+1=2tantheta. Thus, dx=2sec^2thetad theta. Substituting, this gives us:

=int(2sec^2thetad theta)/(4tan^2theta+4)

Factoring:

=1/2int(sec^2thetad theta)/(tan^2theta+1)

Recall that tan^2theta+1=sec^2theta:

=1/2int(sec^2thetad theta)/sec^2theta

=1/2intd theta

=1/2theta+C

From x+1=2tantheta we see that theta=arctan((x+1)/2):

=1/2arctan((x+1)/2)+C