How do you integrate 1(x3)1 using partial fractions?

1 Answer
Oct 31, 2016

The integral is 13ln(x1)16ln(x2+x+1)13arctan(2x+13)

Explanation:

Let's factorise the denominator
x31=(x1)(x2+x+1)
and the decomposition in partial fractions
1x31=Ax1+Bx+Cx2+x+1
1=A(x2+x+1)+(Bx+C)(x1)
If x=01=AC
coefficients of x^2, 0=A+B
Coefficients of x, 0=AB+C
Solving, we found A=13,B=13,C=23
so dxx31=13dxx113(x+2)dxx2+x+1
dxx1=ln(x1)
(x+2)dxx2+x+1=12(2x+1)dxx2+x+1+32dxx2+x+1
12(2x+1)dxx2+x+1=12ln(x2+x+1)
dxx2+x+1=dx(x+12)2+34
let's do the substitution,u=2x+13dudx=23
dx(x+12)2+34=23duu2+1=23arctanu