How do you integrate int (1) / (x * ( x^2 - 1 )^2) using partial fractions?

1 Answer
Dec 25, 2017

The answer is =-1/2ln(|x^2-1|)+ln(|x|)-1/(2(x^2-1))+C

Explanation:

Reminder

x^2-1=(x+1)(x-1)

Let's perform the decomposition into partial fractions

1/(x(x^2-1)^2)=1/(x(x+1)^2(x-1)^2)

=A/x+B/(x+1)^2+C/(x+1)+D/(x-1)^2+E/(x-1)

=(A(x+1)^2(x-1)^2+B(x)(x-1)^2+C(x)(x-1)^2(x+1)+D(x)(x+1)^2+E(x)(x+1)^2(x-1))/(x(x^2-1)^2)

The denominators are the same, compare the numerators

1=A(x+1)^2(x-1)^2+B(x)(x-1)^2+C(x)(x-1)^2(x+1)+D(x)(x+1)^2+E(x)(x+1)^2(x-1)

Let x=0, =>, 1=A

Let x=1, =>, 1=4D, =>, D=1/4

Let x=-1, =>, 1=-4B, =>, B=-1/4

Coefficients of x^4

0=A+C+E, =>, C+E=-A=-1

Coefficients of x^3

0=B+D-C+E, =>, B+D=C-E=0

C=E=-1/2

Therefore,

1/(x(x^2-1)^2)=1/x+(-1/4)/(x+1)^2+(-1/2)/(x+1)+(1/4)/(x-1)^2+(-1/2)/(x-1)

So,

int(dx)/(x(x^2-1)^2)=int(dx)/x-int(1/4dx)/(x+1)^2-int(1/2dx)/(x+1)+int(1/4dx)/(x-1)^2-int(1/2dx)/(x-1)

=ln(|x|)+1/(4(x+1))-1/2ln(|x+1|)-1/(4(x-1))-1/2ln(|x-1|)+C